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Abstract

Computers play an essential role in the composition, engineering, perfor-

mance and distribution aspects of the modern music production paradigm,

however there exists significant barriers to the wide spread use and adoption

of AI techniques in the broader music community. I present a design for a

rhythm generation application and in doing so establish a method by which

a computer may play the role of a performing musician. As a precursor to

this, a history and discussion of pertinent issues related to the computational

model for music is presented, highlighting key values a new design should es-

pouse. A design and implementation for a novel rhythm generation system

based off Markov Models and exploiting the values highlighted is presented

and an evaluation method for testing the efficacy of this system is devised. In

an instance of this evaluation presented in this paper (Milford, 2019, Chap-

ter 5), the implementation averaged better than a purely random algorithm

however the population of data collected was insufficient to draw a conclusive

result. A wealth of knowledge was gained from the process which showed a

number of promising attributes for the design. In particular, it was recom-

mended that further research should consider a hybrid approach of the design

presented here, with training techniques typical of deep learning methods.
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Chapter 1

Introduction

This dissertation presents a study and system design for the implementation of

Artificial Intelligence (AI) techniques in the extension of musical performance.

As a precursor to this, the themes present in music programming languages

and the inherent difficulties of adequately representing and computing musical

abstractions is examined and discussed. Subsequently it delves into the litera-

ture in the field of Music AI to inform and guide the theory pertaining to the

development of one such system. The impetus for this research is to investi-

gate how a computer may play the role of a human in undertaking the various

activities of a performing musician. As such this dissertation focuses on the

design elements and considerations necessary for emulating the functions of a

musician’s performance.

Computers play an essential role in composition, engineering, performance

and distribution within the modern music production paradigm. In these roles,

they typically work to emulate pre-existing non-digital systems. There is how-

ever, a second extensive history in avant-garde musical circles of employing the

processing and algorithmic capabilities of computers to provide unique musical

ideas and sounds in compositions (Taruskin, 2019, Chapter 10). In this regard

there is a precedent for extending the capabilities of the musician through com-

putational means. With the application of modern AI and Machine Learning

(ML) techniques for data processing and information extraction, research in

this cross-disciplinary field will extend our knowledge and understanding of

both the music and AI domains.

Currently there exists significant barriers to the wide spread use and adop-

tion of AI techniques, including issues of how best to represent and manipulate

musical structures in a manner which captures the abstract and multi-layered
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characteristics of music (Balaban, 2003). Furthermore, whilst music may bear

some similar traits to problems of Natural Language Processing (NLP) or Com-

puter Vision, modern AI tools developed and refined for these areas are unlikely

to produce coherent results without thorough optimisation or re-engineering

for the music domain (Hutchings, 2018). In light of this, I posit that it is

possible to produce a system which both performs better than random chance,

and to the typical listener may be perceived as human in origin.

Ultimately my motivations align closely with Ingalls (1981) ethos for the

Smalltalk language – “Any barrier that exists between the user and some part

of the system will eventually be a barrier to creative expression”. These words

resonate more broadly than the bounds within which they were conceived, as

research in the field of music and AI will play an important role in bridging

the divide between scientific and creative domains.

1.1 Scope, Limitations, and Content

This study approaches the field of AI from the context of music, and as such

presents and focuses on pertinent issues in reconciling the intricacies of music

with computational methods, as opposed to retrofitting preexisting AI tools

to music problems. Because of this, emphasis is attributed to the musical im-

plications and outcomes rather than the underlying computer science theories.

The scope of the implementation, it’s design and the techniques used were

limited in depth by the time constraints imposed on this project.

With this in mind, the project was limited in scope to producing a simple

system for generation of stylistic but novel rhythms. This decision was made

because it highlights a specific function that a musician may perform and is

a crucial element of a technique employed in jazz and popular idioms called

‘Comping’ (Witmer, 2003). The implementation was designed to utilise fea-

tures and abstractions of the Euterpea library (Hudak, 2014) and was limited

to the production of Musical Instrument Digital Interface (MIDI) (Burnand,

2001) instructions. All other components of the tested system (such as pro-

duction of the sonic artefacts) were deferred to other computer applications.

Given the defined scope, this dissertation contributes the following knowl-

edge:

• A review and contextualisation of the computer-music and Music AI

fields.
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• A system design and architecture for a rhythm generation application.

• An implementation of this design.

• An evaluation design for assessing Music AI systems.

• An analysis of data from the evaluation of the implementation conducted.

The next chapter will present historical and contextual information from

the computer-music domain, in particular, analysing the lineage of current

systems and highlighting issues of taxonomy and representation which need

to be considered in contemporary work. It will explore the theory and de-

sign of Music AI systems and inform the design and evaluation choices in the

proceeding chapters. Chapter 3 will articulate the details of a system design

and architecture for a rhythm generation application, drawing on theory and

research presented in the preceding chapters. Chapter 4 will detail the evalua-

tion methods that will be used to determine the efficacy of the implementation

from the previous chapter. In particular it contributes a method of empiri-

cal assessment for similar systems. Chapter 5 will present the results of the

evaluation method described in the previous chapter and analyse this data

for themes and trends, to ascertain the effectiveness of the approaches used

in achieving the desired outcomes. Finally, Chapter 6 will draw together my

conclusions from the study, highlighting the achievements and implications of

this work as well as the avenues for further research.
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Chapter 2

Music Programming Languages

and AI Techniques

This chapter reviews the contemporary literature involving the developments

in music oriented programming languages as well as the research conducted in

incorporating AI techniques into musical problem domains. A review of both

areas is necessary to fully understand the issues faced in developing Music AI

systems, and serves to inform both the system design and evaluation choices

articulated in the following chapters. The first section provides a brief history

of music programming languages and their legacy on language conceptuali-

sation and design. The second looks at models and constructs for music in

computing. The final section reviews definitions of AI and its subcategories,

and is followed by an analysis of three categories of Music AI systems.

2.1 Music Programming Languages

2.1.1 The MUSIC-N Languages

Programming languages designed expressly for the manipulation of music have

an extensive history. Thompson (2018) demonstrates a proliferation of music

programming languages from as early as the mid 1980’s. These languages vary

greatly in structure and scope and various authors (Lazzarini, 2013; Roads,

1996; Bresson and Giavitto, 2014) have provided a discussion of the dominant

languages in this field which have proved most influential in the development

of computer music.

The original ‘MUSIC’ languages (MUSIC, MUSIC II, MUSIC III, . . . , V,
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or MUSIC-N, as they are commonly collectively referred to) (Manning, 2013)

played a dominant role in early computer-music work. Lazzarini (2013) dis-

cusses the MUSIC-N languages; their history, development and their influence

in pioneering what is now a common architecture of modern low level music

languages. This architecture includes the segregation of sound generation rou-

tines and sound composition routines. A direct, modern descendent of these

programs is Csound (Csound, n.d) which has much of the same features and de-

signs of the original MUSIC-N languages. Lazzarini also discusses two modern

visual programming languages, Max (Cycling ’74, n.d) (named after the origi-

nal author of MUSIC – Max Matthews) and Pure Data (Pure Data, n.d) which,

although less obvious, are also descendent from the MUSIC-N decades. The

seminal book of Roads (1996) expands upon the importance of these languages

and their design, highlighting the influence of pre-existing musical devices such

as music sequencers, on subsequent languages. The text as a whole provides

in-depth discussion of computer audio concepts and is considered to be the

essential source material.

Roads exposition on the MUSIC-N and similar languages engages in a

detailed discussion of the workings of this architecture. Input components

to this system are A) an Orchestra file and B) a Score file. The Orchestra

file provides a description of the instruments in the sound synthesis language,

whilst the Score file orchestrates the sounds of these instruments. The sound

synthesis language enables the creation of elaborate unit generators which are

distinct functional units that describe the methods of sound processing in

a detailed, low level manner. These are often combined in various ways to

produce the sound of the instruments (Roads, 1996, Chapter 17). Recently

the synthesis concepts fundamental to these languages have been broadened

to include burgeoning areas of sound synthesis and creation; as such Nishino

et al. (2016) formalised their approach to a particular field of synthesis called

Granular Synthesis.

Nishino et al. utilise concepts similar to the unit-generator found in Csound

to approach the problem of Microsound Synthesis (Roads, 2004, Chapter 5)

– a particular form of synthesis related to Granular Synthesis (Roads, 2004,

Chapter 3), in which audio is sliced in to very small parts and reconstructed in

a pattern or order different to the original. Nishino et al. (2016) describe their

programming model for Microsound Synthesis as “simpler and terser” than

existing unit-generator languages and in turn provide an insight into the de-
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sign considerations that go into the creation of music programming languages,

including a critical discussion of the design decisions of existing languages.

2.1.2 Visual Programming Languages

Figure 2.1: An example of the patch chord motif used in Max “Patches” to
connect data and audio to functions and Digital Signal Processing (DSP) units.

Visual programming languages have provided another dominant metaphor

for the design of common music programming languages of which Max (Cycling

’74, n.d) and Pure Data (Pure Data, n.d) are the most common. To under-

stand the genealogy of their design Roads discusses the design and history of

music sequencers, which he describes as rudimentary “computer performers”,

dating back as far as the 13th Century (Roads, 1996, p. 662). Max and Pure

Data, which is an Open-source fork of an early version of Max, simulate the

physical motifs of patch chords and electrical signals found in early sequencers

and analogue electric synthesises (Figure 2.1). These similarities lessen the

cognitive load for users transitioning from music studio hardware to a software

based system, and at the same time expose fundamental computer program-
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ming concepts such as variables and conditionals to the user, and transparently

encapsulate higher level language concepts such as functional abstraction and

object oriented design.

Bresson and Giavitto (2014) further the discussion of visual programming

and declarative languages with the introduction of their real-time, reactive

extension of the Open Music – a visual, Domain Specific Language (DSL)

designed for music composition. Their article compares and contrasts the pro-

gramming model of ‘Open Music’ with that of Max, Pure Data and Open

Sound World (CNMAT, n.d) contributing extensively to the discourse on mu-

sic programming languages. It delves into Open Music, which is implemented

in Common Lisp and shares features with similar DSLs (Hudak, 2014). Bres-

son and Giavitto have observed that the verge between ‘compositional’ archi-

tectures such as Csound, which are designed with separate composition and

performance phases in mind, and ‘performative’ designs such as Max, which

are characterised by a shorter feedback loop and the ability to modify output

on the fly, are a “frustrating limitation” in developing creative music projects.

They stipulate that “their convergence would allow for a tighter coupling be-

tween composition and performance”(Bresson and Giavitto, 2014, p. 3), which

forms the justification for the design choices of their language.

2.1.3 Algorithmic Composition

Algorithmic composition is a category of musical composition and study that

developed alongside early computing and programming environments, taking

design and aesthetic queues from the underlying systems. Roads (1996, Chap-

ter 18) reviews the history of algorithmic composition systems, which the au-

thor defines as “systems designed to produce music autonomously given in a

procedural manner”. Although formalised as a school of study in the second

half of the twentieth century, examples that mimic the underlying concepts

of this style of composition have been documented much earlier in the West-

ern Classical music tradition under the term Aleatory Music (Hedges, 1978).

The dominant example being 18th and 19th Century “Musical Dice Games”,

notable ones being written by composers such as Mozart, where pre-written

fragments of waltzes were selected based on a dice roll and performed in se-

quence (Ruttkay, 1997).

Roads (1996, Chapter 18) divided the field into Deterministic and Stochas-

tic methods and looked explicitly at three systems designed by composer-
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programmers such as Iannis Xanikas, and the methods and work-flows in-

volved. Here Roads discusses philosophical issues amongst musicians of how

these techniques and tools should be used. For example, is the output of such

systems considered original music of the composer or is it simply ‘found mu-

sic’? Should the composer rewrite portions of the music after it is output, or

should be composer change the algorithm and recompute the score? Though

seemingly irrelevant from a computer science lens, these questions still plague

composer-programmers today. Supko (2015) details one such journey in devel-

oping, what he describes as “a silicon-based life form to help make music that

mere carbon-based life forms could never imagine on their own”. In particu-

lar, Supko feels strongly for refining work that is output from their system by

hand. He views his creation as an intelligent, and indiscriminate information

processor, that ultimately serves to compliment human creativity rather than

supplant it. There are similar arguments for the purist’s approach of altering

the algorithm and not the output, however, more importantly, when computer

scientists are inevitably asked to consider the ethical consequences of their

AI research (Gibney, 2018), the history of reflection in the computer-music

paradigm may serve to rationalise and contextualise future discussion around

artificial intelligence.

Roads (1996, Chapter 19) catalogues and describes a number of strategies

for algorithmic composition in his chapter by the same name. These include

systems theory, stochastic processes, language grammars, constraint program-

ming, expert systems and neural networks. Roads work lays the ground for

what would later transition into the umbrella term of AI and Machine Learn-

ing. For instance Toiviainen (2000) classifies representational approaches, such

as Language Grammars or Expert Systems, as traditional Symbolic AI, whilst

the author appears to advocate for Connectionism AI techniques which would

now be referred to as Artificial Neural Networks (ANN). Algorithmic compo-

sition remains a salient approach to understanding and building up complex

and intelligent systems in addition to the plethora of modern ML techniques.

2.2 Computational Model for Music Applica-

tions

The nature of music is a phenomenon which is multi-faceted, many-layered,

and continually changing. As such, the development of a unified computational
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model for music which would allow researchers to reason about components

of one or more systems from a fundamental standpoint is yet to be achieved.

This is an issue that was highlighted by Balaban (2003).

Balaban explains how research in the field of computer music is directed to-

wards the development of narrow systems for treating highly specific problems,

such as disparate systems for music composition, performance, analysis, train-

ing and musical information classification. Each of these systems leads to the

inherent development of computational models which, for instance, introduce

theoretical frameworks or techniques from other fields, such as Artificial Neural

Networks, Concrete Abstraction from Lambda Calculus, Systemic Grammar

approach from Linguistics (Balaban, 2003). In developing these systems, a

non-trivial degree of musical knowledge and intuition are embedded within

these systems but are formed from no discernible foundation.

This can be observed more readily in the few dominant standards in wide-

spread use in the computer-music space. Pulse-Code Modulation (PCM) (Fine,

2008) audio is one of these few standards; it provides a description of the

physical phenomenon, the oscillation of atmospheric pressure to produce sound

waves, which provides the raw material from which music can be produced but

makes no pretence at being an accurate description of music itself. Another

example is Musical Instrument Digital Interface (MIDI) (MIDI Association,

n.d) which has become the de facto standard for the digital description of

music which reduces music to a time series database of events. For systems

which deal in musical data, these are two standards in which they may claim

parity, however every other layer; architectural design choice, or instance of

embedded musical knowledge or understanding, is siloed by the lack of research

and commonality in the computational basis for music itself.

Features of systematic decoupling required to refine a computational model

of music can be found in emerging projects which seek to rethink the music

language paradigm. McCartney (2002), the author of SuperCollider, a music

programming language and sound synthesis engine, provides this perspective

of computer music tools.

The kinds of ideas one wishes to express, however, can be quite

different and lead to very different tools. If one is interested in

realizing a score that represents a piece of music as a fixed artifact,

then a traditional orchestra/score model (Csound, MUSIC-N) will

suffice. Motivations for the design of SuperCollider were the ability

10



to realise sound processes that were different every time they are

played, to write pieces in a way that describes a range of possibil-

ities rather than a fixed entity, and to facilitate live improvisation

by a composer/performer. (McCartney, 2002, p. 1)

McCartney’s point touches on the tensions and inadequacies of current

standing solutions. The authors design rationale for SuperCollider contains a

number of systematic improvements over the programming environments in-

troduced thus far. Those improvements include, a fundamental decoupling

of sound generation systems and scoring languages into a client server ar-

chitecture, the use of an open source protocol for communication between

components, a familiar C like syntax for the scoring language, and a C++

application programming interface for creating sound generation new units.

These improvements have enabled the development of projects such as Over-

tone (Aaron and Rose, 2018) which reuse SuperCollider’s sound generation

components, and combine them with relevant features and libraries of its par-

ent language Clojure (Clojure, n.d). Already this has seen the adoption of

external Clojure libraries such as Quil (Quil, n.d), and ShaderTone (Shader-

Tone, n.d) to coordinate visual elements with audio.

In the context of Balaban (2003), SuperCollider offers progress in the way

of decoupling elements of music creation. In assessing SuperColider’s scoring

language against Balaban’s criteria it yields some shortcomings. The scoring

language excels as a language for performance, and many forms of composition,

however it is not a reusable description of music that is useful for many types of

analysis as well as training and classification scenarios. Furthermore it diverges

significantly from Western Classical notation and aims to offer abstractions for

programmaticly controlling synthesizers and as such supports the latter better.

Due to the decoupled nature of SuperCollider and its open standards com-

munication protocols, its components can, and are being reused in more general

purpose languages. Conceivably, one could develop a model which abstracts

over different layers of musical elements (from signal processing to notation

systems), but similarly decouples itself from any particular sound synthesis

implementation details (like SuperCollider’s sound synthesis engine). In turn

these diverse use cases of analysis or training and classification could be catered

for by separate languages as is the case with Overtone (Aaron and Rose, 2018)

whilst still using large portions of the system. To produce a truly robust model,

Balaban (2003) highlights a number of key concepts and elements which would
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need to be addressed; this includes the investigation of levels of primitives, pa-

rameters and abstraction methods. Balaban suggests a promising avenue for

establishing this would include research into “musical schemas” (Leman, 2012).

Janin et al. (2013) present a recent endeavour to reconcile the difficulties

found in defining a terse musical model with the realities of requirements for

concrete computation, but with a decidedly different approach. They present

a mathematically defined proposal for combining space modelling and time

programming into a single feature called spatio-temporal tiled programming.

Hudak (2008) describes a similar concept, in a paper which defines atomic rules

for Polymorphic Temporal Media, with the justification that considerable work

had taken place in embedding semantic descriptions in multimedia (e.g. via

XML, UML, and the Semantic Web) but not on formalising the semantics

of concrete media. Hudak’s work, whilst media generic (the author provides

examples of the application of its principles to both music and animation),

does have a concrete implementation in the Haskell-based library – Euterpea

(Hudak, 2014). Janin et al. (2013) makes strong comparisons both to Hudak’s

thesis and the Euterpea library, stating that “These languages provide strong

abstraction design principles that can be used efficiently when programming

musical applications” (Janin et al., 2013, p. 23). The authors work differs fun-

damentally in that it aims to further generalise over the atomics of sequential

and parallel spatial dimensions through the introduction of ‘tiling semi-groups’,

to allow the combination of musical objects in both dimensions with a single

operator, the ‘tiled product’. Janin’s work (Janin et al., 2013; Janin, 2016)

appears to focus solely on the music domain and it is unclear if these principles

could be applied to other forms of temporal media. Furthermore, the proofs

remain purely academic and whilst rules may be able to be retrofitted onto a

library such as Euterpea, there is no apparent implementation of this theory

to date.

The functional programming paradigm presents clear advantages for the

representation and composition of musical processes and systems (Janin et al.,

2013; Janin, 2016; Hudak, 2008, 2014; Ingalls, 2018). Programming languages

have the tendency to fundamentally influence the design of the systems they

build. Languages in the pure functional paradigm promote the strong encap-

sulation of data, the design of routines without side effects, reusable functions

with the properties of function composition (Mills, 1975), and in turn the pro-

duction of detailed levels of abstraction. As highlighted, music in the general
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sense exhibits all these features; for example, it can be represented at nu-

merous levels, from low level signals to high level notation systems and its

operations are individually deterministic and able to be arbitrarily composed.

An example of the effective exploitation of pure functional techniques in the

music language design is Faust – Functional Audio Stream (GRAME, 2017).

The Faust programming model combines functional programming with fea-

tures of synchronous and signal processing languages such as Lustre (Verimag,

n.d), Esterel (Berry et al., n.d) or SIGNAL (Polychrony, n.d) and it compiles

to standard C++ for performance and integration with common application

frameworks. It utilises algebraic block-diagrams for function composition and

specifies 5 binary composition operators which define how discrete signal pro-

cessors are merged (GRAME, 2017, Chapter 3). The Faust model focuses

specifically on the Digital Signal Processing (DSP) problem domain, and pro-

duces highly optimised implementations, however it does not provide higher

level representations required for a robust model and diverse use-cases. Eu-

terpea is a DSL written in Haskell which does provide higher level musical

representations, furthermore it has features with semantic similarities to Faust

such as arrow combinators.

Euterpea (Hudak, 2014) is a language for expressing and manipulating mu-

sical structures at ‘Note’ and ‘Signal’ levels. Evolving out of Haskore (Hudak,

1996), a project of research into semantics and features of temporal media;

Euterpea aims to differentiate itself from systems by utilising the abstraction

capabilities of Haskell. In working towards Balaban’s ideal of a computational

basis for music, Euterpea presents the most pragmatic and considered approach

both for the theoretical considerations of building music systems, and the prac-

tical considerations of implementing and integrating diverse frameworks and

systems.

2.3 Definitions of Artificial Intelligence

Artificial Intelligence is a broad field of enquiry with an extensive history of de-

velopment alongside that of computational machines. Paths of enquiry in this

field have remained relatively consistent whilst nomenclature and taxonomy of

particular methods have evolved considerably. The following definitions and

their aliases aim to capture the categorisation most commonly in use, whilst

highlighting historical terminology which is found throughout the literature.
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Artificial Intelligence is the broadest categorisation in use. Subsequent

categories are generally considered narrower definitions, encompassed by the

umbrella of AI. Early approaches to AI involved the development of expert

systems which derived their knowledge base from encoded rule base patterns

(also referred to as rule base systems and categorised as Symbolic AI). A

number of effective Music AI systems were developed in this manner including

the commercial system Band in a Box (Rolland and Ganascia, 2013).

Machine Learning (ML) is defined as a subcategory of AI algorithms and

techniques which model the problem domain based on learning mechanisms.

Within this category Deep Learning is routinely used for classification and

prediction tasks, and utilises a repertoire of ML techniques based on Artificial

Neural Networks (ANN), sometimes referred to as Connectionism AI.

The key aspect of labelling approaches as Deep Learning, is the utilisation

of multi-layered processing, or multi-levelled abstractions for defining complex

representations in terms of simpler ones. Machine Learning and Deep Learning

have received renewed attention due to advances in data capacity and man-

agement, and the increase in parallel computing performance found in modern

multi-core and General-Purpose GPU machines. The GPGPUs allow the com-

putation of the traditionally performance intensive, highly parallel algorithms,

whilst the CPUs allow the utilisation of large data sets for training inferencing

models, by providing and coordinating access to ancillary data input/output

devices such as network interface cards and storage controllers. Other tech-

niques and algorithms which are typically categorised as machine learning (but

not ANN) include genetic and linear regression algorithms, dynamic program-

ming and other deterministic methods (Briot et al., 2017).

Briot et al. (2017) provides a thorough analysis of the field for Deep Learn-

ing techniques as applied to music. My survey approaches the Music AI field

from the music perspective, categorising approaches based on their context

to music rather than to AI. Furthermore, a ML centric approach to Music AI

would not only forgo the observation of other interesting techniques, but would

ignore qualitative aspects of building Music AI. As Hutchings (2018) observes,

the models designed and refined for natural language processing (one of the

more common problem domains for ML techniques) “probably aren’t going

to be very effective ‘out-of-the-box’ tools for music analysis and generation”.

This is due to both the fundamental differences between music and language

and the reality that training data of reasonable accuracy and depth is heav-
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ily skewed toward genre’s of Western Classical traditions, thus limiting the

inferencing abilities of models developed by this method.

2.4 Music Artificial Intelligence

The application of AI in music has an extensive history which progressed along-

side the development of Algorithmic Composition. Roads (1985) asserts that

the field of AI research consists of two broad categories; cognitive science: de-

voted to the development of theories of human intelligence, and applied AI:

the engineering aspects of AI. Both Roads and Laske (1992) were heavily in-

fluenced by cognitive scientist Marvin Minsky (Minsky, 1974) in developing

aspects of and approaches to AI. Roads highlights a lack of flexibility with

commercial hardware and software as the primary barrier to exploration of

this space, however his distinctions are fundamental in focusing and clarifying

the lens of Music AI research.

Marsden (2000) elaborates on the definition of Music AI and approaches

used within the discipline. He highlights issues with the representation of

knowledge and with symbolic and subsymbolic (Leman, 1989) representation

and processing in modelling musical behaviour. Marsden points out it is im-

possible for Music AI to mimic human intelligence in full as he asserts, “its im-

possible in principle for computers to pass a musical version of the Turing test”

(Marsden, 2000, p. 15). This paper provides an interesting, contemporary dis-

cussion of the field and talks in-depth about symbolic and data representation

approaches including musical grammars, and Connectionism AI approaches

such as neural networks. Marsden’s work is particularly pertinent as it high-

lights similar tensions of musical representation and processing experienced by

contemporaries such as Balaban.

Broadly speaking the field of Music AI research breaks into three narrow

fields, with methods and approaches and evaluative frameworks specific to

their area. These are ‘Composition AI’, ‘Performance AI’ and ‘Representation

and Identification AI’. The following sections will touch on the techniques used

in each field to gain an understanding of the context in which my methods will

be based.
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2.4.1 Composition AI

A core outcome of composition AI is the production of static musical artefacts

or data. In the abstract, systems typically take some form of input, derive

some knowledge, then use this to produce the desired output. Most approaches

achieve this in diverse ways which are tailored to the particular features they

wish to focus on.

Phon-Amnuaisuk (2003), presents an approach to the intelligent harmoni-

sation of chorales. Chorales are a particular style of composition which involves

the use of two or more ‘voices’ in the design of melody, harmony and counter-

point. Chorales are unique in that they are a very direct application of problem

solving under constraints. At each point in the chorale the composer must sat-

isfy a set of constraints such as harmonisation of melody, voicing of chords in

a manner that requires the least movement by each part (voice leading) and

alignment of the chordal progression with melodic and lyrical cadences etc.

The author’s approach involves taking rules (e.g. the chord transition from

the sub-dominant to the dominant chord must occur via voice leading and the

melody must be in the tenor line) and directing the application of these rules

in searching for potential harmonisation of a given monophonic line.

This pattern of design is consistent with systems typically found in Music

AI. In this instance the author contributes a well structured approach to defin-

ing music theory rules of choral harmonisation. Colombo et al. (2016) utilise a

similar structure, but harnesses ANN for the knowledge derivation component

of their system.

In designing this approach Colombo et al. acknowledge that they sought

a solution which was both easily trainable and capable of reproducing the

long-range temporal dependencies found in music (e.g. a song structure over a

range of minutes to hours). This system involves input and training on a large

corpus of melodies to generate output which is “coherent with the style they

have been trained on”. In particular it employs gated recurrent unit networks

(Chung et al., 2014) – an optimised form of recurrent neural networks which

“have been shown to be particularly efficient in learning complex sequential

activations with arbitrary long time lags” (Colombo et al., 2016, p.1).

Quick (2014) presents a number of innovations in design and implementa-

tion of a Music AI system. The author’s system employs a system of musical

grammar definitions, as well as formulas for creating an alphabet of chord se-

quences. Of particular interest is the experimental methodology used, which
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employs the musical equivalent of a ‘Turing Test’, in which participants are

surveyed on their perception of the music being man or machine made. Quick’s

method highlights the effectiveness of a language grammar inspired approach

which is deterministic and readily comprehensible in nature than, for instance,

Deep Learning techniques.

2.4.2 Performance AI

The field of Performance AI is diverse in its approaches and outcomes, and

does not necessarily generalise to the input/output patterns found in Com-

position AI. For instance Widmer (2001), focuses on applying AI study to

develop models of ‘musical expression’; whilst Pachet (2003) presents an inter-

active music performance system which adapts to its inputs in real-time. The

uniting theme in this section of research is the analysis and modelling of music

performance in real-time.

Widmer (2001) discusses the application of Machine Learning, to empirical

musicology, in order to “study the phenomenon of Expressive Music Perfor-

mance (or ‘Musical Expression’) and to inductively build formal models of

(particular aspects of) expressive performance from real performances by hu-

man musicians” (Widmer, 2001, p.149). The author’s model aims to utilise

machine learning’s data mining and analysis capabilities to investigate pat-

terns across a large corpus of data, and develop insights and algorithms for

more intelligent music applications. This approach treats musical expression

as a Big Data problem and the data collection model appears to favour in-

struments with highly discrete rhythmic and tonal qualities (e.g. piano, rather

than trombone). Igarashi et al. (2003) study musical expression with a method

that is agreeable to all types of instruments by analysing the respiration char-

acteristics of musicians.

Igarashi et al. (2003) investigates respiration in musical performances with

the objective of defining rules pertaining its characteristics in various musical

contexts. The study discovered, that players tend to exhale at the beginning

of new large musical structures, and inhale at key changes. The study utilised

Inductive Logic Programming (ILP) to analyse performance data. ILP pro-

vides a framework of inductive inference, based on predicate logic which utilises

similar technologies to expert-systems designed in languages such as Prolog.

Miranda (2003) approaches the tangential issue of understanding how an

agreed corpora of music are developed and utilises a method of computational

17



simulation to achieve enlightening results. Miranda presents a simulation of

basic autonomous agents interacting to produce a common repertoire of into-

nations. The study is motivated by an interest to simulate the real-time devel-

opment of communicative sounds within a society from scratch and achieves

this through modelling and computational methods. The author finds it is in

fact possible to simulate the development of musical intonations within a so-

ciety of agents, and that they do, after sufficient interaction, develop a shared

model and understanding. The work highlights the implications this has for

musicology disciplines as well as our understanding of mimetic learning.

Pachet’s system The Continuator (2003) seeks to reconcile interactive, per-

formance oriented systems with composition oriented systems. In the devel-

opment of this, and complementary projects at Flow Machines (Sony, n.d),

Pachet and his colleagues aim to extend the technical ability of musicians with

stylistically consistent, automatically learnt material. The author explains his

motivations as follows:

The undertaking can be seen as a way to turn musical instruments

from passive objects into active, autonomous systems, with which

one can interact using high-level controls, much in the same way

Claude Nougaro, through the blink of an eye, can control, or influ-

ence his pianist Maurice Vander. (Pachet, 2003, p. 119)

The system is based on a Markov Model of musical styles that is augmented

to account for efficient real-time learning and development of style. Markov

Models are a statistical method for modelling a system or series of events, in

which it is assumed that future states depend only on the current state and not

on events that occurred before it (Rabiner, 1989). Thematic material is learnt

in real-time whilst users may direct the system in elements such as form and

range with tactile parameters. The implementation is particularly effective

in highly improvised styles and demonstrates the effectiveness of probability

and Markov Model based systems in producing qualitatively good results. A

similar performance oriented system was developed by Baird et al. (1993), but

with a different emphasis on qualities of musicianship. Baird et al., looked at

implementing a music Performance AI for the Macintosh II. The system reads

incoming MIDI data and matches it to a score in order to determine where

the musician is located in the playback of a piece. The intention is to take the

computer from being a “virtuosic tape recorder” to being an adept ensemble

18



musician that can react to changes in time and other musical events. The

article discusses a tracking algorithm that takes MIDI data and interprets it

correctly to the score, as well as the methods it employs to work with fluctu-

ations in tempo. Whilst the code and implementation details are unavailable,

the discussion aids in the development of architectures and approaches to solv-

ing difficult problems in the real-time space.

The influence of Baird et al. (1993) can be found in numerous studies and

systems including De Mantaras and Arcos’s SaxEx (2002). The system is an

approach Performance AI, utilising case based reasoning which works with

monophonic recordings to develop models of performance from tacit knowl-

edge learned through observation. The authors divide the field of Music AI

into compositional, improvisational and performance systems. Their system

produces improvisations based on the material learnt, however the study does

not specify how their system (or any other ‘improvisation system’) is funda-

mentally different from a composition system. Improvisation in music has

traditionally been a performance art, requiring attention to context, real-time

events and expressive nuance, which can not be captured in a static composi-

tion, and typically varies considerably with each performance.

In a related study, Ramirez and Hazan (2005) develop a system for learning

such expressive nuance from recordings of a similar genre. Ramirez and Hazan

describe an approach to learning expressive performance rules for monophonic

Jazz standards. It uses a melodic transcription system which extracts a set of

acoustic features from audio recordings, then applies genetic algorithms to in-

duce rules of expressive performance. It aggregates the rules produced during

different runs that are of musical interest and have good prediction accuracy.

This work is explored further in another study (Ramirez and Hazan, 2006)

which presents a machine learning approach to modelling the knowledge ap-

plied by a musician when performing a score. It describes a tool for both

generating and explaining expressive music performances of monophonic jazz

melodies. The system consists of a melodic transcription component, a ma-

chine learning component and a melody synthesis component which generates

expressive monophonic output.

These papers present state of the art examples of systems and approaches

to music Performance AI, and contribute to our knowledge and understanding

of systems and processes in both the music domain and AI research.

19



2.4.3 Representation and Identification AI

Music Representation and Identification AI is primarily concerned with devel-

oping, deriving and constructing musical knowledge. In contrast with Com-

position and Performance AI, Representation and Identification AIs do not

necessarily contribute new sonic artefacts, but instead hone and refine tools

for the analysis and interrogation of musical constructs. These systems often

contribute to, or form part of a broader system, but also find application in

musicology disciplines for researching and drawing conclusions across broad

repertoires.

The nature of this style of AI lends itself to investigating the difficult issues

of computational models for music highlighted by Balaban (2003), in particular

Bod (2003),Chew (2003) and Conklin (2003) grapple with related issues in their

work. Bod (2003) takes an in-depth look at developing a parsing model based

on generic assumptions of how the mind perceives patterns. It combines the

two common approaches to parsing, simplest structures first, and probable

structures first into a method which looks for the simplest structure in a group

of the most probable structures, or looks for the most probable structures in

a group of the simplest structures. This study looks to unify approaches to

natural language processing and Music AI with the assertion that the faculties

for each (and potentially visual domains) share commonalities. This approach

utilised Data-Oriented Parsing, which learns grammar by extracting subtrees

from a tree-bank, and processes data by combining these sub-trees to analyse

the new input.

Chew (2003) utilises a boundary search algorithm for determining points

of modulation in a piece using the Spiral Array (Chew, 2000), an abstract

geometric model for describing tonality and harmonic relationships. Chew

describes their findings succinctly in the following:

Comparisons between the choices of an expert listener and the al-

gorithm indicates that in human cognition, a dynamic interplay

exists between memory and present knowledge, thus maximizing

the opportunity for the information to coalesce into meaningful

patterns. (Chew, 2003, p. 18)

Conklin (2003) describes a new method for discovering patterns in the

vertical and horizontal dimensions of polyphonic music. The method works

to both detect common structure, but limit the patterns found to those that
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have musical or statistical significance. This research also defines an ontology

for the description of a musical abstract data type which has similarities with

Haskore (Hudak, 1996) and the Open Music environment.

Each of these authors contributes a perspective to Balaban’s discussion of

the computational basis of music and in doing so highlight how perception and

cognition play a unique role in developing Music AI systems. The following

authors further this discourse in establishing cognition as a driving factor in

the design of these AI systems.

Dannenberg and Hu (2003) derive descriptions of music from audio record-

ing inputs. The paper highlights that “recognition and understanding” are not

well defined in the field of music and even though music exhibits internal logic

and rich structures, no general theory of semantics exists. The paper asserts

the premise that an important part of music understanding is the identification

of repetition within music, which in turn generates structure.

Pikrakis et al. (2003) provide a method for recognising musical patterns in

monophonic audio using Discrete Observation Hidden Markov Models. Hidden

Markov Models differ from simpler Markov Models such as Markov Chains,

by way of the fact that each state within the series of events is not directly

observable (Rabiner, 1989). In essence Pikrakis et al. (2003) presents a system

for recognising musical patterns based on the premise that certain musical

patterns have been shaped and categorised through practice and experience

over many years; similar in notion to the simulated development of a shared

repertoire presented by Miranda (2003).

Povel (2003) presents a concise description of a computational model for

the processing of tonal melodies. The model is based on the assumption that

a tone sequence is represented in terms of a chord progression underlying the

sequence.

Spevak et al. (2003) explores the ambiguity found in attempting to deter-

mine melodic segmentation. The study utilises a corpus of melodies, annotated

with melodic segments by hand by musicians to inform a probabilistic frame-

work for modelling ambiguity. A system for determining boundaries that inte-

grates both the segment boundaries and lengths that the musicians preferred

is presented.

Spiro (2003) investigates the usage of note-length as the sole input to a

model of the “perception of music heard”, which aims to determine time sig-

nature and phrasing. The author developed two models, one using rule-based
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grammar and one using a combination of rule-based grammar and memory-

based approach. The author finds that second method is the most successful

and improves predictions over previous approaches.

Temperley (2003) reinterprets the ‘key-profile model’ approach to determin-

ing musical keys of Krumhansl (1990), using a Bayesian probabilistic model.

This sheds light on a number of issues: the psychological motivation for the

key-profile model, aspects of musical cognition; metrical analysis, and issues

of ambiguity around expectation of tonality.

A common difficulty in all areas of music is in developing a concrete and

shared understanding of how music sounds. Dixon et al. (2003); Tidemann

(2011) investigate this problem of perception by linking musical attributes to

visual attributes. Though tempo and dynamics are relatively rudimentary el-

ements in music, Dixon et al. (2003) highlight just how fundamental they are

in the perception of a ‘human’ and ‘musical’ performance. They present a sys-

tem to visualise different performance aspects (such as tempo and dynamics)

which would typically be registered by listeners on a subconscious level. To

achieve this a real time algorithm to determine and track multiple hypotheses

of the current tempo, and update these hypotheses dynamically is presented

in the paper. The paper demonstrates that these features allow the system to

accurately depict relevant changes to fundamental aspects of widely varying

performances of the same piece.

Similarly Tidemann (2011) seeks to understand the expressiveness of music

through its perceptual links to movement. The article presents an architec-

ture that couples musical input with body movement. The study focuses on a

simulated humanoid robot that learns to play the drums like a typical drum-

mer, taking into account both visual and auditory cues. The study employs

artificial neural networks to simulate the imitation learning process.

Music AI is an expansive and diverse field of research. The proliferation of

music programming languages and system designs offers numerous possibilities

for the development of various approaches. This chapter has presented and

contextualised the relevant work in the computer-music and Music AI domains

and in doings so offers this summary of design considerations for Music AI

systems:

• Representation – Due consideration needs to be given to the computa-

tional model for music. This in turn informs the data model and function

that may be performed.
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• Perception and cognition play an important part in developing a shared

concept of how music sounds.

• A system inline with the aims of this project would be classified as a

Composition AI and should utilise a structure exemplary of systems de-

signed in this vein.
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Chapter 3

A Rhythm Generation

Application

This chapter will articulate the design choices made in the development of a

Music AI oriented system. Primarily the system design draws on the back-

ground established in Chapter 2, with refinements made to support answering

the research questions established in Chapter 1. In particular this chapter will

cover the analysis undertaken to establish the bounds of the system which has

been implemented, including the tools and techniques used and the system

design and implementation details.

3.1 Requirements Analysis

The aims of this project as outlined in Chapter 1 can be summarised as follows:

• Investigate how a computer can play the role of a musician.

• Design a system which to the typical listener may be perceived as human

in origin.

A pragmatic approach to investigate the possibilities for computers playing

the role of a musician involves breaking down their activities into small and

specific functions. Numerous studies take this approach, and it is perhaps the

prevailing method of inquiry in this domain. For instance Miranda (2003) takes

this approach by simulating a commonly accepted learning technique for musi-

cians – imitation, which forms the basis of many pedagogical methods (Suzuki,

2013; Kohut, 1992). A number of studies have had success in producing designs
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which emulated a facet of a musician’s role (Spiro, 2003; Spevak et al., 2003;

Pikrakis et al., 2003; De Mantaras and Arcos, 2002; Baird et al., 1993; Pachet,

2003), and this approach will be utilised in designing a system which aims to be

perceived as human. Notably some of the most compelling systems make use

of case based reasoning, or probabilistic algorithms such as Markov Models,

grammar based rules, or a combination of these techniques (Phon-Amnuaisuk,

2003; Quick, 2014; Pachet, 2003); Pachet’s Continuator (Sony CSL, 2012) be-

ing the most common exemplar for these styles of systems. Given the efficacy

of these approaches the system should utilise a Markov Model style algorithm

in its design.

Chapter 2 highlighted numerous possibilities for the choice of language and

data model. To recapitulate what was established in Chapter 2 the following

captures the key points which should be considered in the design of Music AI:

• Representation – Due consideration needs to be given to the computa-

tional model for music. This in turn informs the data model and function

that may be performed.

• Perception and cognition play an important part in developing a shared

concept of how music sounds.

• A system inline with the aims of this project would be classified as a

Composition AI and should utilise a structure exemplary of systems de-

signed in this vein.

These requirements are broad enough that they leave open a number of op-

tions. For instance an implementation in Faust (Ingalls, 2018) would be ideal

if considering sound synthesis within the system. For systems considering note

level semantics Euterpea provides a DSL within the Haskell language with a

robust data model which translates well to typical music abstractions (Hudak,

2014, 2008, 1996). Haskell as a language allows clear and succinct implementa-

tions of algorithms and the Euterpea library, through use of Haskell’s powerful

type, data, and type-class systems, provides a clear and rich implementation of

Western Classical music notation in code. Given the timeline of this project,

and the scope declared in section 1.1, it was decided that this system should

only focus on the absolute necessary components – the production of MIDI in-

structions. All other components such as the production of audio samples and

sound should be considered out of scope and deferred to ancillary computer

applications.
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3.2 System Design

The key design goals, as established from the Aims, Requirements and Scope

are:

1. The system defers some function of performing musicians to the com-

puter – thus extending the musician’s capabilities, or freeing up the

composer/performer to attend to other details.

2. Produces rhythmic patterns – this project is not concerned with melodic

or harmonic generation, sound synthesis or any other component of music

production.

3. Produces variations over temporal scale of greater than 10 seconds – This

is to ensure adequate time to express rhythmic variation and differentiate

itself from purely random choice (i.e. at short enough lengths, a random

rhythmic pattern may be indistinguishable from a human made pattern).

Ideally this would extend to scales typical of songs (∼3min), however

because of inherent repetition in typical song structures and forms, much

shorter lengths are acceptable.

With this in mind, my approach will utilise probability and Markov Model

algorithms common in AI and ML disciplines and consistent with previous

studies examined (Pachet, 2003; Pikrakis et al., 2003), with a codified de-

scription of common music theory principles to generate structured and varied

rhythms. Specifically this approach uses Markov Chains, trained on a corpus

of rhythmic patterns derived from real music, to generate stylistically similar

but novel patterns to satisfy the key design goals.

Perform

IO.MIDI

IO.Audio
WAV file

Audio Soundcard

MIDI file

MIDI Soundcard

Note Level
Notation

Signal Level
Notation Instrument Map

Figure 3.1: Implementation System Diagram
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The implementation of this project is written in Haskell and makes use of

the Euterpea library for music notation and MIDI Input/Output (I/O). Eu-

terpea provides two main abstractions for manipulating music. The first is the

Note level abstraction which is concerned with music notation, that is speci-

fying notes, rhythms and other musical directions. The second is the Signal

level abstraction which is concerned with the representation and generation of

sound. These two systems can be used in an ad hoc manner to produce or

receive I/O, or can be encapsulated together in an I/O function with attributes

including tempo and instrumentation to produce a more detailed output. The

flow described here is captured in Figure 3.1.

This project will make use of the Note level API and utilise pre-existing,

real sound samples in the production of audio recordings for evaluation phase

of the project, as opposed to making use of synthesised sounds from Euterpea.

To transform this notation into sound, the resulting MIDI stream will be di-

rected into a software based sampler to create the sounds, which, in turn,

will be directed into a Digital Audio Workstation (DAW) – an application for

recording, mixing and processing audio (Case, 2014) – for mixing and process-

ing inline with other sound sources. Everything pertaining to how the rhythms

are performed including the timing and velocity with which a particular in-

strument is struck and larger rhythmic structure, pattern and architecture, is

determined by the system and expressed in the Note level notation.

3.3 Tools and Techniques

Haskell is the language of choice in this implementation. In producing this

application the “Haskell Stack”(Haskell Stack, 2019) tool chain was used to

manage software dependencies and compiler versions. Git (Chacon and Straub,

n.d) has been used for version control and the source code and build docu-

mentation for this project is available online (Milford, 2018). Currently the

implementation makes use of version 8.0.2 of the Glasgow Haskell Compiler

(Gamari, n.d), and Euterpea 2.0.2 library code and its dependencies. In de-

veloping this application an agile methodology was used to enable a process of

experimentation and exploration of techniques. This approach, along with the

characteristic strengths in abstraction of Haskell, and the robust data model

of music provided by Euterpea enabled the exploration of different algorithms

and techniques over the same data with minimal modifications. As detailed
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in Chapter 2, numerous alternative software stacks exist for developing music

software however these characteristics of the Haskell-Euterpea software stack

and techniques employed have proven essential to the exploratory nature of

this project.

3.4 Implementation and Approach

The following section will detail key features of the code developed, in par-

ticular the implementation of Markov Models for rhythm generation as well

as supplemental approaches, based on probabilistic algorithms which formed

part of the experimental phase of this project.

This implementation makes use of the Note level API (Euterpea, 2018)

to generate MIDI instructions. The core construct of the Note API is the

polymorphic “Music” type which is used to develop a complex hierarchy of

types and relationships. Furthermore it allows the use of two key operators;

“:+:”, to perform sequential composition – analogous with a horizontal run of

notes in stave notation and “:=:”, to perform parallel composition – equivalent

to vertically grouped notes in stave notation.

In addition to “Music”, the following types and value constructors from

the Note API are used in the subsequent code listings:

Pitch A type pseudonym for specifying a pitch as a tuple of the Pitch

Class (e.g F sharp) and the Octave.

AbsPitch A type pseudonym for specifying pitch as an absolute number.

Dur A number specifying the length of an event.

Prim Value constructor of Primitive values for Music types.

Note, Rest Value constructor for Primitive types which are notes, or

rests.

Listing 3.1: Percussion Class

class Percs a where
perc ’ : : PercussionSound −> a −> Music Pitch

instance Percs ( Music a ) where
perc ’ ( Prim ( Rest d) ) = r e s t d
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instance Percs Dur where
perc ’ ps d = instrument Percuss ion $

note d ( p i t ch (fromEnum ps + 35) )

−− Bind a rhythm to an instrument
dk : : Percs a => PercussionSound −> [ a ] −> Music Pitch
dk ps ds = l i n e (map ( perc ’ ps ) ds )

−− sounds : : [ Dur −> Music Pi tch ]
sounds = [ ptp BassDrum1 , ptp Acoust icSnare ]

−− percMap : : [ Dur −> Music Pi tch ] −> [ Dur ] −> Music Pi tch
percMap ( s : s s ) ds = l i n e (map s ds ) :=: percMap s s ds

−− Turn PercussionSound in to Pr imi t i v e a
ptp ps d = f l i p Note ( percToPitch ps ) d

−− Construct rhythmic s t r u c t u r e s
type Mphrase = [ Bar ]
type Bar = [ Beats ]
type Beats = [ Beat ]
type Beat = Dur

Listing 3.2: MIDI mapper

percToAbsPitch : : PercussionSound −> AbsPitch
percToAbsPitch ps = fromEnum ps + 35

percToPitch : : PercussionSound −> Pitch
percToPitch ps = pi t ch (fromEnum ps + 35)

The code in Listing 3.1 sets up the core structures which enables clean

abstractions to be used in specifying inputs. In particular it extends Euterpea’s

“Music” type to accommodate percussion instruments. The MIDI specification

enumerates pitches and sounds from 0 to 127 and as part of this percussion

sounds start at 35. The percussion class abstracts over these details Listing 3.2

handles the actions of converting it to the necessary format for MIDI output.

Listing 3.3: Measures

{− | To encode behav iour in the performance o f
rhythmic ins truments based on the f o l l ow i n g assumptions :

− Simple , quadrup le meter (4/4)
− Beat h i rarchy i s as f o l l o w s : 1 ,3 ,2 ,4
− Phrases are rough ly 2ˆn measures long (2 ,4 ,8 ,16)

−}

data FourFour = FourFour { beatOne : : Dur
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, beatTwo : : Dur
, beatThree : : Dur
, beatFour : : Dur
} deriving (Show)

data QuarterBeat a = QuarterBeat Music
deriving (Show)

mkQuarterBeat : : Music a −> QuarterBeat
mkQuarterBeat m = i f dur m == 1 % 4 then m else error ”

beatOne , i s too shor t or too long ”

bar : : FourFour −> Music a
bar b( one two three four ) = one :+: two :+: three :+: four

−− An enumerated ve r s i on

Listing 3.4: An enumerated version of Listing 3.3

r k i c k 4 = perc BassDrum1 den :+: perc BassDrum1 sn
rk i c k 5 = perc BassDrum1 sn :+: perc BassDrum1 den
rk i c k 6 = tempo (3/2) ( perc BassDrum1 en :+: perc BassDrum1

en :+: perc BassDrum1 en )

r snare : : Int −> Music Pitch
r snare 1 = r e s t qn
r snare 2 = perc Acoust icSnare qn
r snare 3 = perc Acoust icSnare en :+: perc Acoust icSnare en
r snare 4 = perc Acoust icSnare den :+: perc Acoust icSnare sn
r snare 5 = perc Acoust icSnare sn :+: perc Acoust icSnare den
r snare 6 = tempo (3/2) ( perc Acoust icSnare en :+: perc

Acoust icSnare en :+: perc Acoust icSnare en )

rh iha t : : Int −> Music Pitch
rh iha t 1 = r e s t qn
rh iha t 2 = perc ClosedHiHat qn
rh iha t 3 = perc ClosedHiHat en :+: perc ClosedHiHat en
rh iha t 4 = perc ClosedHiHat den :+: perc ClosedHiHat sn
rh iha t 5 = perc ClosedHiHat sn :+: perc ClosedHiHat den
rh iha t 6 = tempo (3/2) ( perc ClosedHiHat en :+: perc

ClosedHiHat en :+: perc ClosedHiHat en )

rhitom : : Int −> Music Pitch
rhitom 1 = r e s t qn
rhitom 2 = perc HighTom qn
rhitom 3 = perc HighTom en :+: perc HighTom en
rhitom 4 = perc HighTom den :+: perc HighTom sn
rhitom 5 = perc HighTom sn :+: perc HighTom den

31



rhitom 6 = tempo (3/2) ( perc HighTom en :+: perc HighTom en
:+: perc HighTom en )

Listing 3.3 outlines the approach to construct abstractions for better encod-

ing of music measures. Listing 3.4 shows an enumerated version of Listing 3.3

which provides the same features.

Listing 3.5: Random Music

{− | Uniform D i s t r i b u t i o n
L i s t o f percuss ion sounds , l i s t o f durat ions , seed i n t

udRhythm : : [ PercussionSound ] −> [ a ] −> In t −> Music Pi tch
−}
udRhythm [ ] = r e s t wn
udRhythm (p : ps ) r s n = dk p (map ( selectRhythm rs ) ( r n) )

:=: udRhythm ps r s (n + 256)
where

r n = randomRs (0 , length ( r s )−1) (mkStdGen n)

selectRhythm rs i = r s ! ! i

Listing 3.6: Example usage of Random Music

myRhythms = [ qn , en , sn , hn ]
myInstruments = [ BassDrum1 , OpenHiHat , ClosedHiHat ,

Acoust icSnare ]

−− Uniform d i s t r i b u t i o n
myudRhythm = udRhythm myInstruments myRhythms 42

Several approaches were tested including a purely random method which

served as a baseline with which to evaluate other methods. Listing 3.6 demon-

strates use of random, uniform distribution rhythm generator API. It takes a

list of instruments, a list of durations and a seed number for the random num-

ber generator as parameters. Listing 3.5 makes use of Haskell standard library

functions (randomRs, mkStdGen) to produce uniformly distributed random

integers with the parameters of range (fixed to the length of the instrument

list) and the seed integer. “udRhythm” uses these integers to produce a list of

rhythms for each instrument in the instrument list.

Listing 3.7: Markov Model Music

mc’ ps n i = M. run n ps 0 (mkStdGen i )
mcm’ pss n i = concat (M. runMulti n pss 0 (mkStdGen i ) )
mcmcm’ pss n i = concat $ concat (M. runMulti n pss 0 (

mkStdGen i ) )
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rhythmGen ’ : : ( PercussionSound , Mphrase ) −> Int −> Int −>
Music Pitch

rhythmGen ’ ( s , p ) n i = dk s $ mcmcm’ p n i

rhythmGen : : [ ( PercussionSound , Mphrase ) ] −> Int −> Int −>
Music Pitch

rhythmGen [ ] = r e s t wn
rhythmGen ( ( s , p ) : ds ) n i = rhythmGen ’ ( s , p ) n i :=:

rhythmGen ds n i

Listing 3.8: Example usage of Markov Model Music

bea01 , bea02 , bea03 , bea04 , bea05 , bea06 : : [ Beat ]
bea01 = [ qn ]
bea02 = [ en , en ]
bea03 = [ en , en ]
bea04 = [ en , en ]
bea05 = [ qn , qn , qn , qn ]
bea06 = [ ten , ten , ten ]

bar01 , bar02 : : Bar
bar01 = [ bea01 , bea03 , bea06 , bea01 ]
bar02 = [ bea02 , bea01 , bea05 , bea04 ]

phr01 , phr02 : : Mphrase
phr01 = [ bar01 , bar02 ]

testRhythmGen = rhythmGen [ ( BassDrum1 , phr01 ) , ( Acoust icSnare ,
phr02 ) ] 3 42

The implementation in Listing 3.7 was arrived at after extensive iterations.

In its distilled form the structures from Listing 3.1 allow you to define Beat,

Bar (measure), and Phrase (termed Mphrase) structures. The “rhythmGen”

function exploits these structures to generate rhythmic patterns which can

reference arbitrarily long phrase histories. Listing 3.8 provides an example of

usage of the “rhythmGen” API. This first parameter takes a list of instrument

(PercussionSound) and phrase (Mphrase) tuples which is used to construct a

Markov Chain for each instrument. The instrument and phrases are coupled

here so that musically appropriate phrases for each instrument are use in gener-

ating the output (unlike the random implementation). The second parameter

“n” is passed to Data.MarkovChain module to determine size of prediction con-

text, which in this instance is the number of values from the phrase list. The

third parameter, “i” is a seed passed to “mkStdGen” to produced a random

number generator. Listing 3.7 makes use of Haskell “markov-chain” package
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(which provides the Data.MarkovChain module) and its API (run, runMulti)

to produce a list of durations for each instrument.

This chapter has detailed and justified a design and implementation for a

novel rhythm generation application. The following chapter will present the

evaluation process designed for the assessment of the efficacy of this system.

It will include details of auxiliary systems utilised in the creation of sound

artefacts, details of the data collection methods used, and analysis techniques

that will be performed on the resulting data set.
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Chapter 4

Evaluation method for AI

Generated Music

This chapter will detail the evaluation process designed for assessing the system

and implementation established in Chapter 3. Chapter 1 highlighted that this

study approaches AI from the Music perspective, and is concerned primarily

with the musical qualities and perceptions of the system’s output. This is

an important detail as it informs the questions the evaluation should seek to

answer. In particular the evaluation should determine:

• Is the system distinguishable from human derived work?

• To what degree is it perceived to be human (or not)?

Furthermore the evaluation design should acknowledge the background of

the listener. There could be grounds to include the collection of demographic

information regarding prior musical training within the scope of this evalu-

ation, however this information may prove irrelevant. One should not need

to be an expert listener in order to be able to quantify if something sounds

human or non-human, additionally the system aims to be agreeable to the

typical listener, whether a trained musician or not. In a similarly designed ex-

periment the author found that “Music theory training showed no correlation

with average scores given to each composer”(Quick, 2014, pp. 165–167), where

composer aligns with both human and computer based sources.

There are currently no standard metrics or experimental procedures for

assessing performance and qualities of algorithms in this domain, however there

are a number of studies from which to draw inspiration (Quick, 2014; Colombo
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et al., 2016; Gifford et al., 2017; Halkiopoulos and Boutsinas, 2012; Hutchings

and McCormack, 2017), and which have been consulted in the overall design

of this assessment including the survey design, data collection methods and

statistical analysis.

The aim of this evaluation is to quantify the effectiveness of the system

based on a person’s assessment of the sonic artefacts produced. Participants

will be asked to rate artefacts on a five point linear scale of ‘Human’ to ‘Com-

puter’ produced. This evaluation method draws similarities with the well

known ‘Turing Test’, however, by contrast it makes use of a scale for answers,

rather than binary Computer/Human options. This will allow me to deter-

mine the degree of effectiveness or ineffectiveness of the system with respect

to random and human options, which will serve as a baseline for the analysis.

The evaluation will take place as a survey in which participants will be

presented with a recording and asked to assess this recording on a scale of

one to five, one being ‘Probably Human’, two being ‘Maybe Human’, three

being ‘Undecided’, four being ‘Maybe Computer’ and five being ‘Probably

Computer’. The user will be presented with a total of nine audio samples,

which will fall into one of three categories:

1. Random – The artefacts produced are the product of random selection

of duration and instrumentation within the boundaries of a predefined

tempo and instrumentation.

2. RhythmGen – Artefacts produced are the product of a corpora of struc-

tured data supplied to the Markov Model implementation, again utilising

the same predefined tempo and instrumentation.

3. Human – Artefacts produced are done so utilising a human input de-

vice. Rhythms will be produced at the same tempo and using the same

instrumentation as in both computer generation cases.

Recordings used will be between 10 and 20 seconds in length. While similar

experiments have made use of shorter recordings (Quick, 2014, p. 162) I noted

that at lengths less than this eliciting perceivable variation for purely rhythmic

phrases is difficult for common stylistic patterns.

In addition to this, audio samples produced will utilise the same instru-

ment samples and acoustic processing including the addition of reverb, to
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make recordings sound normal and representative of typical listening environ-

ments and experiences. Random, and RhythmGen samples will be produced

by bussing MIDI data from the system into Ableton Live (Ableton Inc., n.da),

a commercial DAW (See Figure 3.1). The Human made recordings will utilise

a hardware human interface device – Ableton Push (Ableton Inc., n.db), de-

signed for producing MIDI data through a touch based interface, which will

also be bussed into the same DAW. From there the data will undergo a min-

imal processing chain which will map the MIDI data to sound samples, add

reverb to the sounds, and bring the samples up to the same base volume level.

This is designed to give all samples similar acoustic properties so as to avoid

a listener bias towards certain recordings.

Finally, the rhythmic data supplied to RhythmGen and the recordings pro-

duced for the human component will be novel and original, so the participants

should not have prior exposure to these exact audio records. However the sam-

ples will be indicative of a particular musical style and genre, which will be

primarily derived from styles present in popular music idioms to avoid listener

biases due to lack of training or exposure.

This evaluation design lends itself to a statistical analysis in which the

distribution and variation of responses may be examined to extract information

about the efficacy of the system. In doing so, this study will be able to quantify

the effectiveness of its approach in pursuit of the aim to determine “how a

computer may play the role of a human in undertaking various activities of a

performing musician” (Milford, 2019, p. 1). The following chapter will present

an analysis of the data collected and a discussion of the implications of these

findings.
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Chapter 5

Results and Analysis

This chapter presents the results from the evaluation procedure described in

Chapter 4. Graph and table figures have been provided to aid in the discussion

and analysis of the raw data and highlight its statistical features. This chapter

provides a discussion on these features as well as the implications of the findings

observed.

5.1 Results

Figure 5.1: Frequency and Distribution (0 = ‘Probably Human’, 1 = ‘Maybe
Human’, 2 = ‘Unsure’, 3 = ‘Maybe Computer’, 4 = ‘Probably Computer’)
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A total of seventeen surveys were collected consisting of respondents from per-

sonal and professional social circles. A summary of the raw data is presented

in Figure 5.1, which superimposes the function of normal distribution high-

lighting the differences present in the data set. The distributions of the raw

data exposes clear differences between human and random sources. However

the distribution of the RhythGen source scores was inconsistent and diffuse.

Because of this the averages of participants scores were analysed as well to

provide further insight into the data collected.

Mean Values
Human Rhythmgen Random

1.62 2.69 2.94

Table 5.1: Mean scores of each composer

Figure 5.2: Distribution of Average Scores

Mean scores for each source are presented in Table 5.1. Human produced

audio recordings yielded the lowest score as expected. The value however was

closer to “Unsure” (2) than “Probably Human” (0) potentially indicating per-

ceptual issues with the audio recordings or some other part of the assessment

method. Random scored the highest, (closest to “Probably Computer”) and

the RhythmGen source scored better than this, positioned in the middle of
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the group. Figure 5.2 presents the distribution of the averages of participants

scores, expressing this relationship.

T-Test Comparisons
Human/Random Human/RhythmGen Rhythmgen/Random

Score 1.36× 10−7 2.78× 10−6 1.93× 10−1

Average 4.71× 10−5 2.01× 10−4 3.32× 10−1

Table 5.2: p values from paired double tailed t-test

Table 5.2 presents the p-values obtained from a paired, two-tailed Student

T-Test on both the raw data and the averages of participants’ scores. Both

Human/RhythmGen and Random/Human paired tests produced statistically

significant scores (p < 0.01), indicating distinctive populations of data and a

high degree of confidence for their mean scores. RhythmGen/Random however,

produced inconclusive results (p > 0.01) to reject the null hypothesis.

5.2 Discussion

Figure 5.3: Distribution by Composer-Question (0 = ‘Probably Human’, 1
= ‘Maybe Human’, 2 = ‘Unsure’, 3 = ‘Maybe Computer’, 4 = ‘Probably
Computer’)
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Figure 5.4: Average By Composer-Question

The assessment conducted was limited due to the time constraints of the

project. A larger population would be necessary to gain a definitive answer on

the outcome of the approaches presented in this paper. The preliminary data

however, does provide a number of insights into the system outputs and the

evaluation design. A number of unexpected trends were expressed in the data.

Because of this, supplemental figures 5.3 and 5.4 are supplied as a method of

visually breaking down the scoring on a per-question basis.

It was observed that certain recordings appeared to consistently score the

opposite of their related artefacts. For instance Human3 scores are distributed

further right than Human1 and Human2, whilst in stark contrast Random2 is

distributed further left than its similarly composed recordings. This is high-

lighted clearly in Figure 5.4 where Random2 averages nearly an entire point

lower than the next closest score from the same source and Human3 averages

almost an entire point higher than the lowest human score. Its difficult to

comment on the RhythmGen scores however it is possible that the inconsis-

tencies on both ends of the spectrum made the perception of the RhythmGen

sources ambiguous, leading to the wide gamut of scores.

The inconsistencies observed in the data suggest the recordings presented

were not truly indicative of their source. The human produced sources were not

processed from their input apart from the procedures explained in Chapter 4.
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Often recordings produced in this manner undergo quantisation – a process by

which slight timing variations are corrected towards the global session tempo

whilst correcting for stylistic considerations. In the absence of this the human

produced recordings had a tendency to speed up and slow down or forgo suc-

cessive beats. By contrast the computer produced recordings did not exhibit

this behaviour and the difference would have been noticeable in an exclusively

rhythmic audio mix. In the case of the human composed sources these cues

may have been misinterpreted by the listener as being foreign or computer

in origin as these attributes are usually edited out in published recordings or

largely mitigated by extensive rehearsal.

Similar to Human and Random sources, the first RhythmGen recording

performed well, and better then its similar recordings. A number of constraints

were observed on the patterns that could be expressed to the algorithm. Pri-

marily due to unresolved type class issues, it was not possible to express purely

rhythmic rests alongside rhythmic beats. That is, it was only possible to specify

when to play, and not when not to play. A number of methods were employed

to mitigate this issue however, ultimately this limitation may have produced

less than ideal outputs. In the context of the data collected it is difficult to tell

if these subtleties were perceived as such, and if this constraint had an actual

bearing on the outcome.

Some Random recordings, particularly Random2, were routinely perceived

as human. The author notes that these recordings tended to have a likeness

in style to the drum fills often found in jazz genres. As the Random algorithm

had no concept of beats or measures, the patterns produced tended to become

“additive rhythms” – a style in which groupings are aurally formed on a beat

by beat basis and that are rarely subject to repetition. In addition to this,

Random2 by chance appeared to start with a degree of measured time likely

contributing to its lower than average score. From the data collected it appears

that randomly produced sequences of rhythms are not necessarily perceived as

such. Ironically a smarter algorithm for producing random sounding rhythms

may be required, which would take into consideration the full array of musical

experiences the listener might be accustom to.

The results of this assessment are inconclusive, but provide valuable infor-

mation for both system and experiment designs. Ideally this experiment would

be performed again with at least twice the number of respondents. Utilising

a number of audio recordings from each source was useful in reasoning about
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participants responses to similar sources. Finally care should be taken to se-

lect recordings which are indicative of their source, or another method should

be devised to inform listeners expectations. In the case of rhythmic centric

systems this may prove difficult, as typical listeners may not be accustom to

thinking academically about the rhythmic aspects of music they hear on a

regular basis.
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Chapter 6

Conclusion

This dissertation has presented a study and system design for the implemen-

tation of a selection of AI techniques to extend and compliment musical per-

formance. Specifically the aim of this study has been to determine how a

computer can play the role of a human in undertaking the activities of a per-

forming musician. In doing so the etymology of Music AI and its ancillary

domains was discussed and used to inform the framework of reasoning by

which the system design in implementation was guided.

The work of Balaban (2003) was influential in guiding the choice of imple-

mentation language, and highlighting deeper considerations of the computa-

tional basis for music, which music programming languages and systems face.

Hudak (2008) and Janin et al. (2013) further influenced the theory supporting

the system design, in presenting a considered approach which addressed many

of the challenges expressed by Balaban.

The design for a novel rhythm generation application, informed by the

prior art of proponents of the field such as Quick (2014) and Pachet (2003)

was presented. The implementation of this, with consideration for the factors

presented at the end of Chapter 2, led to the development of a lightweight and

flexible system, which supported the exploration of numerous approaches.

From the outset this dissertation emphasised the musical aspects of Music

AI systems. An evaluation procedure designed to assess the efficacy of the

system from a musical perspective was developed. It drew on assessment

designs from similar research to create an evaluation similar to a “Turing

Test”, but with a five point linear scale for responses to help evaluate the

system with greater accuracy.

Through this endeavour, this dissertation contributes the following knowl-
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edge:

• A review and contextualisation of the computer-music and Music AI

fields.

• A system design and architecture for a rhythm generation application.

• An implementation of this design.

• An evaluation design for assessing Music AI systems.

• An analysis of data from the evaluation of the implementation conducted.

An evaluation of this system was conducted however, the depth of the

study was not sufficient to conclusively determine its effectiveness. The results

did show some promising traits, and provided a wealth of information for the

refinement of future assessment endeavours.

The outcomes of this paper alone highlight numerous avenues for further

research, particularly in refining and formalising a methodology for this field

of research. A standard assessment instrument would foster a refined approach

to music oriented AI systems and create the opportunity for the dissemination

of generalised findings and the direct comparisons of methods, system design

and architectures. The system implementation in this paper utilised non-

machine learning approaches because it was found that they can be highly

effective; future research should seek to incorporate these techniques (expert

systems, grammar based approaches etc.) with training techniques from deep

learning to harness a hybrid style approach to this problem domain. Finally,

this research highlighted that thought needs to be given to understanding

music, its unique cognitive processes and the implications this has for the

design of its computational models.

In summation, these efforts show computers have a tangible role in music

performance. With diligent care for the intricacies of musical cognition, the

accelerating pace of AI research will present novel and interesting opportunities

for the Music Artificial Intelligence domain.
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Appendix A

Program Code

Working application code of the system developed, including build documen-

tation, is available at: https://gitlab.com/brettmilford/rhythmgen.git

Listing A.1: RhythmGn.hs

module RhythmGn (
module RhythmGn . Lib ,
module RhythmGn .Random,
module RhythmGn . S e l f S i m i l a r ,
module RhythmGn . Markov ,
)
where

import RhythmGn . Lib
import RhythmGn .Random
import RhythmGn . S e l f S i m i l a r
import RhythmGn . Markov

Listing A.2: Lib.hs

{−# LANGUAGE TypeOperators #−}
{−# LANGUAGE TypeSynonymInstances #−}
{−# LANGUAGE F l e x i b l e I n s t a n c e s #−}
module RhythmGn . Lib
where
import Euterpea

−− Support f o r t r i p l e t s

tbn , twn , thn , tqn , ten , tsn , ttn , t s f n : : Dur
tbnr , twnr , thnr , tqnr , tenr , tsnr , ttnr , t s f n r : : Music Pitch

tbn = 4/3 ; tbnr = r e s t tbn
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twn = 2/3 ; twnr = r e s t twn
thn = 1/3 ; thnr = r e s t thn
tqn = 1/6 ; tqnr = r e s t tqn
ten = 1/12 ; tenr = r e s t ten
tsn = 1/24 ; t sn r = r e s t tsn
ttn = 1/48 ; t tn r = r e s t ttn
t s f n = 1/96 ; t s f n r = r e s t t s f n

{−| b e t t e r convers ion from p e r c u s s i o n sound

percToAbsPitch ’ : : PercussionSound −> AbsPitch
percToAbsPitch ’ ps = absPi t ch $ p i t c h ( fromEnum ps + 35)

−}
percToAbsPitch : : PercussionSound −> AbsPitch
percToAbsPitch ps = fromEnum ps + 35

percToPitch : : PercussionSound −> Pitch
percToPitch ps = pi t ch (fromEnum ps + 35)

{−| Handle d u r a t i o n s and r e s t s wi th the same f u n c t i o n
Adhoc polymorphism

−}

class Percs a where
perc ’ : : PercussionSound −> a −> Music Pitch

instance Percs ( Music a ) where
perc ’ ( Prim ( Rest d) ) = r e s t d

instance Percs Dur where
perc ’ ps d = instrument Percuss ion $

note d ( p i t ch (fromEnum ps + 35) )

{−|
perc ’ : : PercussionSound −> Music a −> Music Pi tch
perc ’ ( Prim ( Rest d ) ) = r e s t d
perc ’ ps d = instrument Percuss ion $ note ( dur d ) (

p i t c h ( fromEnum ps + 35) )
−}

−− Bind a rhythm to an instrument
dk : : Percs a => PercussionSound −> [ a ] −> Music Pitch
dk ps ds = l i n e (map ( perc ’ ps ) ds )
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−− Construct rhythmic s t r u c t u r e s
type Mphrase = [ Bar ]
type Bar = [ Beats ]
type Beats = [ Beat ]
type Beat = Dur

{−| TODO: WIP, make polymorphic over Rests as w e l l
data Beat = Dur | Music Pi tch d e r i v i n g (Show , Eq ,

Ord)
−}
type TimeSignature = ( Int , Dur )

−− ptp : : PercussionSound −> Dur −> Music Pi tch
−− ptp ps d = Prim ( Note d ( percToPitch ps ) )

−− sounds : : [ Dur −> Music Pi tch ]
sounds = [ ptp BassDrum1 , ptp Acoust icSnare ]
−− durs : : [ a −> P r i m i t i v e a ]
−− durs = [ Note qn , Note en , Rest tn ]
−− t h i s approach w i l l map a l l r e s t s to t h e i r own l i n e . . .
−− percMap : : [ Dur −> Music Pi tch ] −> [ Dur ] −> Music

Pi tch
percMap ( s : s s ) ds = l i n e (map s ds ) :=: percMap s s ds

−− Turn PercussionSound i n t o P r i m i t i v e a
ptp ps d = f l i p Note ( percToPitch ps ) d

{−| To encode behav iour in the performance o f
rhythmic ins t ruments based on the f o l l o w i n g

assumptions :

− Simple , quadrup le meter (4/4)
− Beat h i r a r c h y i s as f o l l o w s : 1 ,3 ,2 ,4
− Phrases are rough ly 2ˆn measures long (2 ,4 ,8 ,16)

−}

data FourFour = FourFour { beatOne : : Dur
, beatTwo : : Dur
, beatThree : : Dur
, beatFour : : Dur
} deriving (Show)

data QuarterBeat a = QuarterBeat Music

57



deriving (Show)

mkQuarterBeat : : Music a −> QuarterBeat
mkQuarterBeat m = i f dur m == 1 % 4 then m else error ”

beatOne , i s too shor t or too long ”

bar : : FourFour −> Music a
bar b( one two three four ) = one :+: two :+: three :+:

f our

−− An enumerated v e r s i o n
r k i ck : : Int −> Music Pitch
rk i ck 1 = r e s t qn
rk i ck 2 = perc BassDrum1 qn
rk i ck 3 = perc BassDrum1 en :+: perc BassDrum1 en
rk i ck 4 = perc BassDrum1 den :+: perc BassDrum1 sn
rk i ck 5 = perc BassDrum1 sn :+: perc BassDrum1 den
rk i ck 6 = tempo (3/2) ( perc BassDrum1 en :+: perc

BassDrum1 en :+: perc BassDrum1 en )

r sna r e : : Int −> Music Pitch
r sna re 1 = r e s t qn
r sna re 2 = perc Acoust icSnare qn
r sna re 3 = perc Acoust icSnare en :+: perc Acoust icSnare

en
r sna re 4 = perc Acoust icSnare den :+: perc Acoust icSnare

sn
r sna re 5 = perc Acoust icSnare sn :+: perc Acoust icSnare

den
r sna re 6 = tempo (3/2) ( perc Acoust icSnare en :+: perc

Acoust icSnare en :+: perc Acoust icSnare en )

rh iha t : : Int −> Music Pitch
rh iha t 1 = r e s t qn
rh iha t 2 = perc ClosedHiHat qn
rh iha t 3 = perc ClosedHiHat en :+: perc ClosedHiHat en
rh iha t 4 = perc ClosedHiHat den :+: perc ClosedHiHat sn
rh iha t 5 = perc ClosedHiHat sn :+: perc ClosedHiHat den
rh iha t 6 = tempo (3/2) ( perc ClosedHiHat en :+: perc

ClosedHiHat en :+: perc ClosedHiHat en )

rhitom : : Int −> Music Pitch
rhitom 1 = r e s t qn
rhitom 2 = perc HighTom qn
rhitom 3 = perc HighTom en :+: perc HighTom en

58



rhitom 4 = perc HighTom den :+: perc HighTom sn
rhitom 5 = perc HighTom sn :+: perc HighTom den
rhitom 6 = tempo (3/2) ( perc HighTom en :+: perc HighTom

en :+: perc HighTom en )

Listing A.3: Random.hs

module RhythmGn .Random where
import Euterpea
import System .Random
import System .Random. D i s t r i b u t i o n s
import RhythmGn . Lib

−− se lectRhythm : : [ a ] −> I n t −> a
selectRhythm r s i = r s ! ! i

{−| Uniform D i s t r i b u t i o n
L i s t o f p e r c u s s i o n sounds , l i s t o f durat ions , seed

i n t
udRhythm : : [ PercussionSound ] −> [ a ] −> I n t −> Music

Pi tch
−}
udRhythm [ ] = r e s t wn
udRhythm (p : ps ) r s n = dk p (map ( selectRhythm r s ) ( r n)

) :=: udRhythm ps r s (n + 256)
where

r n = randomRs (0 , length ( r s )−1) (mkStdGen n)

−− t u p l e t in the form ( lower bound , range ) , a ( random )
f l o a t

toRange : : ( Int , Int ) −> Float −> Int
toRange ( l , r ) x = round ( fromIntegral ( l ) ∗ x +

fromIntegral ( r ) )

{−| Linear d i s t r i b u t i o n
ldRhythm : : [ PercussionSound ] −> [ a ] −> I n t −> Music

Pi tch
−}
ldRhythm [ ] = r e s t wn
ldRhythm (p : ps ) r s n = dk p (map ( selectRhythm r s ) l )

:=: ldRhythm ps r s (n+256)
where l = map ( toRange (0 , length ( r s )−1) ) r s1

r s1 = rands l i n e a r (mkStdGen n)

{−| Exponent ia l d i s t r i b u t i o n
edRhythm : : [ PercussionSound ] −> [ a ] −> I n t −> Float −>

59



Music Pi tch
−}
edRhythm [ ] = r e s t wn
edRhythm (p : ps ) r s n lam = dk p (map ( selectRhythm r s ) l

)
:=: edRhythm ps r s (n+245)

lam
where l = map ( toRange (0 , length ( r s )−1) ) r s1

r s1 = rands ( exponent i a l lam ) (mkStdGen n)

{−| Gaussian d i s t r i b u t i o n
gdRhythm : : [ PercussionSound ] −> [ a ] −> I n t −> Float −>

Float −> Music Pi tch
−}
gdRhythm [ ] = r e s t wn
gdRhythm (p : ps ) r s n s i g m = dk p (map ( selectRhythm r s )

l )
:=: gdRhythm ps r s (n+256)

s i g m
where l = map ( toRange (0 , length ( r s )−1) ) r s1

r s1 = rands ( gauss ian s i g m) (mkStdGen n)

−− TODO: Impliment rhythm s e l e c t i o n w i t h i n bea t u n i t

Listing A.4: SelfSimilar.hs

module RhythmGn . S e l f S i m i l a r where
import Euterpea

data Clus te r = Clus te r SNote [ C lus te r ]
type SNote = (Dur , AbsPitch )

s e l f S im : : [ SNote ] −> Clus te r
s e l f S im pat = Clus te r (0 , 0 ) (map mkCluster pat )

where mkCluster note =
Clus te r note (map ( mkCluster . addMult note )

pat )

addMult : : SNote −> SNote −> SNote
addMult ( d0 , p0 ) ( d1 , p1 ) = ( d0∗d1 , p0+p1 )

f r i n g e : : Int −> Clus te r −> [ SNote
]

f r i n g e 0 ( C lus te r note c l s ) = [ note ]
f r i n g e n ( Clus te r note c l s ) = concatMap ( f r i n g e (n−1) )

c l s
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simToMusic : : [ SNote ] −> Music Pitch
simToMusic = l i n e . map mkNote

mkNote : : (Dur , AbsPitch ) −> Music Pitch
mkNote (d , ap) = note d ( p i t ch ap)

−− s s : : [ SNote ] −> I n t −> AbsPitch −> Dur −> Music a
s s pat n t r te = transpose t r $ tempo te $ simToMusic $

f r i n g e n $ s e l f S im pat

Listing A.5: Markov.hs

{−# LANGUAGE ConstraintKinds #−}

module RhythmGn . Markov where
import Euterpea
import System .Random
import Data . MarkovChain as M
import RhythmGn . Lib

mc’ ps n i = M. run n ps 0 (mkStdGen i )
mcm’ pss n i = concat (M. runMulti n pss 0 (mkStdGen i ) )
mcmcm’ pss n i = concat $ concat (M. runMulti n pss 0 (

mkStdGen i ) )

rhythmGen ’ : : ( PercussionSound , Mphrase ) −> Int −> Int
−> Music Pitch

rhythmGen ’ ( s , p ) n i = dk s $ mcmcm’ p n i

rhythmGen : : [ ( PercussionSound , Mphrase ) ] −> Int −> Int
−> Music Pitch

rhythmGen [ ] = r e s t wn
rhythmGen ( ( s , p ) : ds ) n i = rhythmGen ’ ( s , p ) n i :=:

rhythmGen ds n i

{−| TODO: Impliment [ Dur ] chunking based on
t i m e s i g n a t u r e

Turn [ Dur ] i n t o Phrase based on TimeSignature
i . e . chunk a l i s t to bea t & bar l e n g t h

mkPhrase : : TimeSignature −> [ Dur ] −> Phrase
mkPhrase ( i , d ) ds = mkBars i $ mkBeats d ds

61



mkBar : : I n t −> [ Beat ] −> Bar
mkBar i ( b : bs ) = mkbar ’ i−1 bs b

where
mkbar ’ [ ] b = error ” not enough b e a t s to

make a bar ”
mkbar ’ 0 b = b
mkbar ’ i (m: ms) b = mkbar ’ i−1 ms m: b

mkBeat : : Dur −> [ Dur ] −> ( Beat , [ Dur ] )
mkBeat l ( d : ds )

| d == l = ( [ d ] , ds )
| d < b = mkbeat ’ l−d ds [ d ]
| o t h e r w i s e = error errmsg
where
errmsg = ”The rhythm c r o s s e s the bea t ”
mkbeat ’ l ( d : ds ) b

| d == l = ( d : b , ds )
| d < l = mkbeat ’ l−d ds d : b
| o t h e r w i s e = error errmsg

mkBeats : : I n t −> [ Dur ] −>
mkBeats l ds = mkBeat l ds
−}

Listing A.6: Examples.hs

module Examples where
import Euterpea
import RhythmGn

{−| Simple , non−g e n e r a t i v e rhythm
The p lay t h i s wi th ‘ p lay rhythmicPattern ‘

−}

k ick = perc BassDrum1 en
ohhat = perc OpenHiHat en
chhat = perc ClosedHiHat sn
snare = perc Acoust icSnare en

k ickL ine = l i n e [ kick , r e s t qn , kick , kick , r e s t dqn ]
snareLine = l i n e [ r e s t qn , snare , r e s t qn , snare ]
chhatLine = l i n e [ r e s t sn , chhat , chhat , chhat ]
rhythmicPattern = kickLine :=: snareLine :=: t imes 4

chhatLine

{−| S e l f S imi lar Generator

62



See RhythmGn . S e l f S i m i l a r f o r more in format ion
Usage : ‘> p lay tma ‘

−}

smp1 : : [ SNote ]
smp1 = [ ( en , 3 6 ) , ( qn , 0 ) , ( en , 3 6 ) , ( en , 3 6 ) , ( dqn , 0 ) ]
smp2 = [ ( qn , 0 ) , ( en , 3 8 ) , ( qn , 0 ) , ( en , 3 8 ) ]
smp3 = [ ( sn , 0 ) , ( sn , 4 2 ) , ( sn , 4 2 ) , ( sn , 4 2 ) , ( sn , 0 ) , ( sn , 4 2 ) , (

sn , 4 2 ) , ( sn , 4 2 ) , ( sn , 0 ) , ( sn , 4 2 ) , ( sn , 4 2 ) , ( sn , 4 2 ) , ( sn , 0 )
, ( sn , 4 2 ) , ( sn , 4 2 ) , ( sn , 4 2 ) ]

tm1 = instrument Percuss ion ( s s smp1 4 0 (1/100) )
tm2 = instrument Percuss ion ( s s smp2 4 0 (1/100) )
tm3 = instrument Percuss ion ( s s smp3 4 0 (1/100) )
tma = tm1 :=: tm2 :=: tm3

{−| Random Generator wi th p r o b a b i l i t y d i s t r i b u t i o n s
See RhythmGn . Random f o r more i n f o
Usage : ‘ p lay myudRhythm ‘

−}

−− N.B Rests in the same l i s t cause a type error
−− e . g . myRhythms = [ qnr , en , sn , hnr ]
myRhythms = [ qn , en , sn , hn ]
myInstruments = [ BassDrum1 , OpenHiHat , ClosedHiHat ,

Acoust icSnare ]

−− Uniform d i s t r i b u t i o n
myudRhythm = udRhythm myInstruments myRhythms 42

−− Linear d i s t r i b u t i o n
myldRhythm = ldRhythm myInstruments myRhythms 42

−− Exponent ia l d i s t r i b u t i o n
myedRhythm = edRhythm myInstruments myRhythms 42 0 .34

−− Gaussian d i s t r i b u t i o n
mygdRhythm = gdRhythm myInstruments myRhythms 42 0 .34 0

{−| Markov Chains
See RhythmGn . Markov f o r more in format ion
Usage : ‘> p lay testRhythmGen ‘

−}

bea01 , bea02 , bea03 , bea04 , bea05 , bea06 : : [ Beat ]
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bea01 = [ qn ]
bea02 = [ en , en ]
bea03 = [ en , en ]
bea04 = [ en , en ]
bea05 = [ qn , qn , qn , qn ]
bea06 = [ ten , ten , ten ]

bar01 , bar02 : : Bar
bar01 = [ bea01 , bea03 , bea06 , bea01 ]
bar02 = [ bea02 , bea01 , bea05 , bea04 ]

phr01 , phr02 : : Mphrase
phr01 = [ bar01 , bar02 ]
phr02 = [ bar02 , bar01 ]

{−| Phrases must corespond to instruments ,
i t doesn ’ t make sense to s e l e c t the instrument
randomly as in the random implementat ion

−}
testRhythmGen = rhythmGen [ ( BassDrum1 , phr01 ) , (

Acoust icSnare , phr02 ) ] 3 42
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